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Abstract 

An examination of the relationship between a response variable and several predictor 

variables were considered using logistic and Poisson regression. The methods used in the 

analysis were descriptive statistics and regression techniques. This paper focuses on the 

household utilized/ not utilizes primary health care services with a formulated questionnaire, 

which were administered to 400 households. The statistical Softwares used are Microsoft 

Excel, SPSS 21 and Minitab 16. The result showed that the Logistic regression model is the 

best fit in modelling binary response variable (count data); based on the two assessment 

criteria employed [Akaike Information Criterions (AIC) and Bayesian Information Criterions 

(BIC)].  

 

Keywords:  Binary response variable, model selection criteria, Logistic and Poisson 

regression model 

 

1. Introduction  

 As a statistical methodology, regression analysis utilizes the relation between two or 

more quantitative variables, that is, a response variable can be predicted from the other(s). 

This methodology is widely used in business, social, behavioural and biological sciences 

among other disciplines, Michael et al. (2005). The two types of regression are Linear and 

Nonlinear regression.  

 

 The different types of linear regression are simple and multiple linear regression 

(Nduka, 1999) while the Nonlinear regressions are log-linear, quadratic, cubic, exponential, 

Poisson, logistic and power regression. Notably, our interests in this research are the Poisson 

regression and Logistic regression. 

 Poisson regression is useful when the outcome is a count. It is used to estimate rates 

or counts comparing different exposure groups in the same way that logistic regression is 

used to estimate odds ratios comparing different exposure groups. 

 

 Also, the logistic and Poisson regression are used to determine which variables are 

important and what is the direction of the effect for each variable. These models allow 

analysts to take account of the knowledge present in a set of observations between the 

dependent variable and independent variables (Armstrong, 2012). 

The general form of Poisson regression model is similar to logistic regression and 

multiple regression models. Applications of the Poisson distribution can be found in many 

fields related to counting such as; 1) Telecommunication; 2) Biology; 3) Radioactivity; etc.   

 

Similarly, logistic regression is an essential model considered for use when the 

response variable is binary with two possible outcomes, such as financial status of firm 

(profit or loss), blood pressure: (High or low) etc. Both models are appropriate for analyzing 
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data arising from either observational or experimental studies (Michael et al, 2005). This 

paper work considered Poisson and Logistic regression models because the response 

outcomes obtained are discrete (or binary response variable).  

The aim of this study is to assess Poisson and logistic regression analysis using data 

on Primary Health Service and to determine which regression model is appropriate to 

investigate the response variable effects on more than one predictive variable (i.e. Logistic or 

Poisson regression analysis). The objectives are; 1) To estimate a suitable Poisson and 

logistic regression model. 2) To determine the odd ratio for a unit change in the predictor. 3) 

To compare the model and parameter estimates of Poisson and logistic regression. 

 

This study focuses on finding out the effects of response variable (when the response 

variable is a binary count variable) on the predictors; using data on Primary Health Care 

Service in Choba (Obio/Akpor) Local Government Area, Rivers State. Therefore, it is 

necessary to report the limitations of the study as a way of pointing out the extent to which 

the finding may be generalized: (1) The sample is limited to 400 (four hundred) Households 

in Choba (Obio/Akpor) Local Government Area; (2) The sampling is irrespective of social 

stratification; and (3) The study is limited to logistic and Poisson regression. The target 

population of this study was four hundred (400) household. However, four hundred and 

twenty (420) questionnaires were administered to households and based on the questionnaires 

retrieved (or returned), 400 questionnaires were considered for this study. The remaining part 

of the paper is organized as follows: Section two provides related literature followed by the 

description of the two methods (logistic and Poisson regression) and data used in the Section 

three. The numerical analysis and results in section four. Section five concludes and provides 

recommendation.  

 

2. Review of Poisson and Logistic Regression 

Greene (2003) said that Poisson regression may be appropriate when the dependent 

variable is a count, for instance event such as the arrival of telephone call at a call centre. The 

events must be independent in the sense that the arrival of one call will not make another 

more or less likely, but the probability per unit time of event is understood to be related to 

covariates such as time of day. 

Berk (2003) stated that count data are common in criminological research. When the 

response variable is a count, one option is to employ Poisson regression as a special case of 

the generalized linear model. Poisson formulation is relatively simple to interpret because the 

right hand side is the familiar linear combination of predictors and because when exponential, 

the regression coefficients are interpreted as multipliers. Poisson regression applications have 

been published by a number of respected criminologist; Paternoster and Brame (1997), 

Sampson and Laub (1997); Osgood (2000). 

 

According to Yanqiu et al. (2009), Poisson regression was used to study time trends 

and regional differences in maternal mortality (RMM) in China from 2000-2005 and found 

that RMM declined by an average of 5% per year. Here, Poisson regression model is used to 

examine the incidence of maternal mortality at the hospital. The Poisson model assumes that 

the variance of the count data is equal to the mean (Agresti, 2007). The coefficients of the 

Poisson regression model are estimated using the maximum likelihood techniques. The 

deviance (likelihood ratio) test statistic, G
2
, is used to assess the adequacy of the fitted model.  

According to Michael et al. (2005), a Poisson regression is useful when the outcome 

is a count, with large-count outcomes being rare event. For instance, the number of times a 

household shops at a particular supermarket in a week is a count, with a large number of 

shopping trips to the store during the week being a rare event. 
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However, according to Kleinbaun (1994), logistic regression is identified as the most 

popular method used in analyzing epidemiological data when the outcome variable is binary. 

The response variable is coded with the value 0 or 1 and it is used in categorical data. 

Logistic regression provides a method for modeling a binary response variable. For 

example, we may wish to investigate how death (1) or survival (0) of patients can be 

predicted by a level of one or more metabolic markers. Logistic regression makes no 

assumption about the distribution of the independent variables. The relationship between the 

predictor and response variable is not a linear function in logistic regression. Despite this, 

there are many distribution functions that have been proposed for use in the analysis of a 

dichotomous variable. Cox and Snell (1989) discussed some of these. 

 

Although the statistical properties of linear regression models are invariate to the 

(unconditional) means of the dependent variable, the same is not true for binary dependent 

variable model. The mean of binary variable is the relative frequency of event in data, which 

in addition to the number of observations, constitutes the information content of the data set. 

According to McCaullagh and Nelder (1992), a logistic regression is considered as a 

parametric model and is a form of generalized linear model. This is because the probability 

distribution for the response variable is specified as well as the error terms. Logistic 

regression makes use of several predictor variables which may be categorical or numerical. 

The odds ratio is usually of interest in a logistic regression due to its ease of interpretation. 

Odds ratio is a statistic that measures the odds of an events compared to the odds of another 

event [for 2 x 2 contingency table, the odds ratio is a measure of association (Agresti, 2007)]. 

Combination of the odds and the logistic regression leads to the interpretation of any logistic 

regression result (Hosmer and Lemeshow, 1989). 

 

The Logistic regression model has been used in many discipline including medical 

studies; Devita et al. (2008). It has been used in the social research [Ingeles et al. (2009)] also 

an important tool at the commercial applications and in Medical studies. The dependents 

variable of the logistic model is classified into two basic types (Afifi et al. 2004). 

A large sample size is needed for testing of hypothesis in logistic regression since it 

does not require much assumption for the hypothesis to be accurate. This is because of the 

nature of probabilities which logistic regression principles are based. A logit transformation 

is used [Grimms and Yarnold, (1995); Grizzle et al. (1969)]. 

In logistic regression interpretation, two other similar statistically equivalent tests 

have been suggested. These are the Wald Test and score Test. The assumptions needed for 

these tests are the same as those of the likelihood ratio test. The Wald test is obtained by 

comparing the maximum likelihood estimate of the slope parameter, 1 to an estimate of its 

standard error. 

 

Hauck and Donner (1997) examined the performance of the Wald test and likelihood 

ratio test. They found that Wald test behaved in an aberrant manner, often failing to reject the 

null hypothesis when the coefficient was significant. Therefore, they recommended the 

likelihood ratio. 

Jennings (1986) has also looked at the adequacy of inference on logistic regression 

based on Wald statistic. His conclusions are similar to those of Hauck and Donner (1997). 

Both the likelihood ratio test (G) and the Wald test (W), require the computation of maximum 

likelihood estimate for 1. 

However, Christensen (1997) gave the following warning about the Hosmer and 

Lemeshow (2000) goodness of fit test; if too few groups are used to calculate the statistics 

(<5) it will always indicate that the model fits the data. That is why Hosmer and Lemeshow 
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(2000) advocated that before finally accepting that a model fits, an analysis of the individual 

residuals and relevant diagnostic statistics be performed. 

         Hosmer and Lemeshow (2000), highlighted that it is possible to construct a model that 

fits the data (good estimation of the relationship between response and explanatory variables) 

but is a poor predictive model. 

 

According to Michael et al (2005), logistic regression is an important nonlinear 

regression model and could be considered for use when the response variable is qualitative 

with two possible outcomes, such as financial status of firm (sound status, headed towards 

insolvency) or blood pressure status (high blood pressure, low blood pressure). Logistic 

nonlinear regression model is appropriate for analyzing data arising from either observational 

studies or from experimental studies (such as in this study). 

The two main uses of logistic regression include: 

1. The first is the prediction of group membership. Since logistic regression 

calculates the probability of success over the probability of failure, the results of 

the analysis are in the form of odds ratio. 

2. Logistic regression also provides knowledge of the relationships and strengths 

among the variables. In any regression problem, the key quantity is the mean 

value of the outcome variable, given the value of the independent variable. The 

quantity is called  the conditional mean and will be expressed as “E(Y/X)”; where 

Y denotes the  outcome variable and X denotes a value of the independent 

variable and with dichotomous data, the conditional mean must be greater than or 

equal to zero and less than  or equal to 1[ 0  E (y/x)  1].  

 

There are two primary reasons for choosing the logistic distribution namely, (a) the 

mathematical point of view, it is an extremely flexible and easily used function. (b) It tends 

itself to a clinically meaningful interpretation. Testing for significance in logistic regression, 

the overall significance is based upon the value of G test statistic and this is commonly 

referred to as the deviance statistic. Interpreting a regression equation involves relating the 

independents variables to the dependent variable that the equation was developed to answer. 

However, with logistic regression, it is difficult to interpret the relation between the 

independent variables and that probability that Y = 1 directly because the logistic regression 

equation is non-linear. However, Statisticians have shown that the relationship can be 

interpreted indirectly using a concept called the odds ratio. The odds in favour of an event 

occurring is defined as the probability that the event will occur divided by the probability that 

the event will not occur. In logistic regression, the event of interest is always Y = 1.  

Logistic regression forms a best fitting equation or function using the maximum 

likelihood method, which maximizes the probability of classifying the observed data into the 

appropriate category given the regression coefficients.  

Therefore, the first goal of Poisson and logistic regression analysis is the statistical 

significance of certain variable and how they affect the response, whereas the latter is more 

concerned with the ability to accurately and efficiently predict the response. Hosmer and 

Lemeshow (2000) highlighted that it is possible to construct a model that fits the data (good 

estimation of the relationship between response and explanatory variables) but is a poor 

predictive model. In this research, we compare the model and parameter estimates of Poisson 

and logistic regression analysis; then determine which of the regression model fits the data set 

considered. 

 

3. Methods of evaluation  

 The methods considered in this study are logistic and Poisson regression models 
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where the error terms are normally distributed and the response outcomes are discrete 

[Michael, et al., (2005) and Pregibon, (1981)]. 

 

3.1  Mathematical Expression of Logistic and Poisson Regression Models 

3.1.1 Logistic Regression models with Binary Response Variable 

Consider the simple linear regression model: 

 1,0,10  iiii                                               (3.1) 

where  the outcome i is binary, taking on the value of either 0 or 1. The expected 

response  i has a special meaning in this case. Since   0 i  we have: 

  ii  10                                                                                (3.2) 

Consider i to be a discrete random variable for which we can state the probability 

distribution as follows: 

          Table 3.1: Probability of i  

i  Probability 

1   ii  1  

0   ii  10  

Thus, i  is the probability that 1i  and i1 is the probability that 0i . By the 

definition of expected value of a random variable in Equation (3.2), we obtain 

         1101  iiiii                                         (3.3) 

Equaling Equation (3.2) and (3.3), we thus have 

    iii   10            (3.4) 

Then, the logistic mean response function is  

   
 
 




10

10

exp1

exp




 ii                                                            (3.5) 

 

- Likelihood Estimation 

Let the discrete random variable i be Bernoulli random variable, and each i

observation is an ordinary Bernoulli random variable where: 

 
 

  







ii

ii





10

1
                                                                            (3.6) 

Then, its probability distribution is representing as follows: 

    nif iiiii

ii ,...,2,1,1,0,1
1


                         (3.7) 

Note that   iif 1 and   iif 10 . Hence,  iif  simply represents the probability that 

01 ori  . Since the i observation are independent. Their joint probability function is: 

      







n

i
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n

i
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1

1

1

21 1,...,,                                (3.8) 

Taking logarithm of Equation (3.8), then the joint probability function: 

      
 






























n

i

n

i

ie

i

i
ei

n

i

iiene
iiL

1 11

1

21 1log
1

log1log,...,,log 



      (3.9) 

Since   ii   for a binary variable, it follows from Equation (3.5) that: 
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    1

10exp11


 ii                     (3.10) 

Furthermore, from Equation (3.5), we obtain  

 i

i

i

e 











10

1
log 




                                                                (3.11) 

Hence, Equation (3.9) can be expressed as follows: 

        
 


n

i

n

i

ieiie L
1 1

101010 1log,log                                  (3.12) 

where  10 ,L replaces  nL  ,...,, 21 , to show explicitly that this function is now 

viewed as the likelihood function of the parameter to be estimated, given the sample 

observation.   

 

- Maximum Likelihood Estimation 

 The maximum likelihood estimates of 0̂  and 1̂  in the simple logistic regression 

model are those values of 0  and 1  that maximize the log-likelihood function in Equation 

(3.13). Computer intensive numerical search procedures are therefore required to find the 

maximum likelihood estimates of b0 and b1.  Once the maximum likelihood estimates b0 and 

b1 are found, we substitute these values into the response function in Equation (3.5) to obtain 

the fitted response function. We shall use i̂  to denote the fitted value for the i
th 

case. 

  
 
 i

i

i
bb

bb






10

10

exp1

exp
̂                                                                    (3.13) 

The fitted logistic response function is as follow: 

 
 




10

10

exp1

exp
ˆ

bb

bb
                                                                        (3.14) 

If we utilize the logit transformation in (3.4), we can express the fitted response function in 

(3.14) as follow: 

   10 bb                                                                                      (3.15) 

where  

  
















ˆ1

ˆ
log e                                                                         (3.16) 

Equation (3.15) is called the filled logit response function. Once the fitted logistic 

response function has been obtained, the next steps are to examine the appropriateness of the 

fitted response function and, if the fit is good to make a variety of inferences and predictions. 

 

Multiple Logistic Regression Model 

The simple logistic regression model (3.15) is easily extended to more than one 

predictor variable. In fact, several predictor variables are usually required with logistic 

regression to obtain adequate description and useful predictions. 

In extending the simple logistic regression model, we simply replace 110    in Equation 

(3.14) by 1122110 ...   pp . To simplify the formula, we use matrix notation 

and the following three vectors: 
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       We have  

  1122110 ...   pp                                           (3.17) 

  1122110 ...   pipiii                                        (3.18) 

From Equation (3.17) and (3.18), the simple logistic function (3.5) extends to the 

multiple logistic response function as follows:  

   
 
 







exp1

exp
                                                                         (3.19) 

and  the equivalent simple logistic response form Equation (3.10) extend to: 

        1
exp1


                                                                      (3.20) 

Similarly, the logit transformation (3.11): 

  
















1
log e                                                                         (3.21) 

Now leads to the logit response function, or linear predictor: 

                                                                                              (3.22) 

The multiple logistic regression model can be stated as follows: 

   
 
 



i

i

ii





exp1

exp
                                                                  (3.23) 

Note: when the logistic regression model contains only qualitative variables, it is often 

referred to as a log-linear model.   

However, fitting of model utilize the method of maximum likelihood to estimate the 

parameter of the multiple logistic response function (3.23). The log-likelihood function for 

simple logistic regression in (3.12) extends directly for multiple logistic regression: 

          
 


n

i

n

i

ieiie L
1 1

1loglog                                              (3.24) 

Numerical search procedures are used to find the values of 110 ,...,, p  the 

maximize )(log Le . These maximum likelihood estimates will be denoted by 110 ,...,, pbbb

. Let b denote the vector of the maximum likelihood estimates: 
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The fitted logistic response function and fitted values can be expressed as follows: 

  
 
 

   1
exp1
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ˆ







 b

b

b
                                                 (3.26) 

  
 
 

   1
exp1

exp1

exp
ˆ







 b

b

b
i

i

i

i                                                (3.27) 

where    

  1122110 ...   ppbbbbb                                                (3.28) 

  1122110 ...   pipiii bbbbb                                            (3.29) 

In this paper, we shall rely on standard statistical packages for Logistic regression to 

conduct the numerical search procedures for obtaining the maximum likelihood estimates, 

such as SPSS 21 and Minitab 16. 

 

3.1.2  Poisson Regression Model 

Poisson distribution outcomes are counts  ,...,2,1,0i , with a large count or 

frequency being a rare event. The Poisson probability distribution is as follows: 

      
 

...,2,1,0;
!

exp







 
f                                  (3.30) 

where  

 )(f denotes the probability that the outcome is  and 

1.2.3...)1(!  . 

The mean and variance of the Poisson probability distribution are: 

                                                                                                   (3.31) 

     2
                                                                                          (3.32) 

Note that the variance is the same as the mean. Hence, if the number of trips follows the 

Poisson distribution and the mean number of store trips for a family with three children is 

larger than the mean number of trips for a family with no children, the variance of that 

distribution of outcomes for the two families will also differ. At times, the count response Y 

will pertain to different units of time or space, then Poisson probability distribution is 

expressed as follow: 

       
   

...,2,1,0;
!

exp








 tt

f                            (3.33) 

where  

  denote the mean response for  for a unit of time or space (e.g. one month). 

 t denote the number of units of time or space to which  corresponds.  

   is the number of store trips during the month (e.g.  is the number of store trips 

during one week where the unit time is one month)for a unit of time or space. Note: all 
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response i   pertains to the same unit of time or space. 

 

Poisson Regression Model: Like any nonlinear regression model, can be stated as follows: 

    ...,2,1,0;  iiii                                                 (3.34) 

The mean response for the i
th

 case, to be denoted now by i for simplicity, is assumed 

as always to be a function of the set of predictor variables: 121 ,...,,  p . We use the 

notation   ,i  to denote the function that relates the mean response i to i , the 

values of the predictor variables for case i , and  , the values of the regression coefficients. 

The commonly used functions for Poisson regression are: 

     iii  ,                                                                  (3.35) 

      iii  exp,                                                       (3.36) 

      ieii  log,                                                       (3.37) 

In all three cases, the mean response i  must be nonnegative. Since the distribution 

of the error terms i for Poisson regression is a function of the distribution of the response 

i which is Poisson regression model in the following form: 

    ,ii                                                                                 (3.38) 

where i  are independent Poisson random variables with expected values i . 

The most commonly used response function is   ii exp , also used in this 

study. 

 

-Maximum likelihood Estimation  

 For Poisson regression model (3.38), the likelihood function is as follows: 

    
   






 




n

i i

ii
n

i

iifL
11 !

),(exp),( 
          (3.39a) 

or 

 
   
















n

i

i

n

i

ii

L

1

1

!

),(exp),( 

                        (3.39b) 

Once the functional form of   ,i is chosen, the maximization of (3.39a) or (3.39b) 

produces the maximum likelihood of the likelihood function: 

        



n

i

ie

n

i

i

n

i

ieie L
111

!log,,loglog        (3.40) 

Numerical search procedures are used to find the maximum likelihood estimates

110 ,...,, pbbb . Iteratively reweighted least squares can again be used to obtain these 

estimates. We also rely on standard statistical software packages specifically designed to 

handle Poisson regression to obtain the maximum likelihood estimates. 

 After the maximum likelihood estimates are been found, we can obtain the fitted 

response function and fitted values using Equation (3.41) and (3.42): 

  b,ˆ                                                                                          (3.41a) 

  bii ,ˆ                                                                                       (3.41b) 



International Journal of Applied Science and Mathematical Theory ISSN 2489-009X Vol. 4 No. 1 2018    

www.iiardpub.org 

  

 
 
 

IIARD – International Institute of Academic Research and Development 
 

Page 51 

From the three functions in (3.19) to (3.21), the fitted response functions and fitted values 

are: 

 :                          b̂                     bii ̂              (3.42c) 

  :exp              bexp̂          bii exp̂         (3.42d) 

   :log be            be log̂          biei log̂      (3.42e) 

 

Model Development: Model development for a Poisson regression model is carried out in a 

similar fashion to that logistic regression, conducting tests for individual coefficients or group 

of coefficients based on the likelihood ratio test Statistic G
2
 in (3.30) . For Poisson regression 

model (3.40), the model deviance is as follows: 

     
























  

 



n

i

n

i

ii

i

i

eipDEV
1 1

121
ˆ

ˆ
log2,...,, 


                        (3.43) 

where i̂ is the fitted value for the ith case according to (3.41b). The deviance residual for 

the ith case is: 

   
2

1

ˆ2
ˆ

log2
























 ii

i

i
eiidev 


                                    (3.44) 

The sign of the deviance residual is selected according to whether ii ̂ is positive or 

negative. Index plots of the deviance residuals and half-normal probability plots with 

simulated envelopes are useful for identifying outliers and checking the model fit. Note that if 

,0i the term 

















i

i
ei

̂
log in (3.43) and (3.44) equals 0. 

 

3.2   Model Specification  

Hence, two class of models (logistic and Poisson regression) are defined as 

1) Logistic regression model:   

  0                       (3.45) 

and  

 2)   Poisson regression model: 

   , expi i i                                                              (3.46) 

where  

   is the probability of a success,   is vector of predictor variables and  is a vector 

of unknown coefficients associated with the predictors for Logistic regression model.  

For Poisson regression model;   ,i  denotes the function that relates the 

mean response i to i , the values of the predictor variables for case i , and  is the 

values of the regression coefficients.  

However, the link function  g  can be expressed as 

Logit:     
















1
logg                                                                                  (3.47) 

and  the odds of success are 

  


10exp
1





                                             (3.48) 

Note that Equation (3.48) is the binary logistic regression model with one covariate or factor. 
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For multiple logistic regression model with more than one covariate, the probability event is  

 
 

 pp

pp











...exp1

...exp

22110

22110
                                       (3.49) 

for Logistic regression model, while 

     0 1 1, exp exp ...i i i p p                  (3.50) 

for Poisson regression model; we have 0 = constant, i = coefficients, and i 
thi  

predictors (or exponential of the i
th

 predictors). 

To test whether several ,0k or relate to the response variables, the following 

techniques are employed; Likelihood ratio test statistic G
2
, Odd ratio, Wald test (z-test) and 

Model selection criteria: Akaile Information Criterion (AIC) and Bayesian Information 

Criterion (BIC): 

 

3.3  Likelihood ratio test Statistic G
2
 

To test whether a subset of the X variables in a multiple logistic regression model can 

be dropped, that is, in testing whether the associated regression coefficients .0k  The test 

procedure employed in this research is the general linear test procedure for Maximum 

likelihood estimation, the test is called the likelihood ratio test. It is based on comparison of 

full and reduced models. The full logistic model with response function: 

For logistic regression model: 

    1
exp1


 F                                                                                  (3.51) 

and  Poisson regression model: 

 1122110 ...   ppF bbbb                                                     (3.52) 

 

3.4  Odd ratio 

The Odd ratio is useful in interpreting the relationship between a predictor and 

response. The odds ratio (q) can be any nonnegative number. The odds ratio = 1 serves as the 

baseline for comparison. If q = 1, it indicates there is no association between the response and 

predictor. Also, if q > 1 the odds of success are higher for the reference level of the factor (or 

for higher levels of a continuous predictor). Then, if q < 1, the odds of success are less for the 

reference level of the factor (or for higher levels of a continuous predictor). Values farther 

from 1 represent stronger degrees of association. 

 

Illustration: For the binary logistic regression model with one covariate or factor, the odds 

of success are:  

 


10exp
1





                                             (3.53) 

Equation (3.53) is the binary logistic regression model with one covariate or factor. The 

exponential relationship provides an interpretation for 0 : The odds increase multiplicatively 

by 1e
 for every one-unit increase in  . The odds ratio is equivalent to exp( 1 ). For 

example, if 1 is 0.75, the odd ratio is exp(0.75), which is 2.11. This indicates that there is 

111% increase in the odds of success for every one unit increase in . 

 

3.5 Wald test (
*Z - test) 

A large-sample test of a regression parameter can be constructed based on the 

hypotheses, such that 
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                                                             (3.56) 

an appropriate test statistic is: 

   
 

* 0,1,...,k

k

b
Z k p

S b
                                                          (3.55) 

and the decision  rule is: 

     00
2

1
,, 



 rejectotherwiseacceptIf   

where  Z is a standard normal random variable and  kS b  is the estimated approximate 

standard deviation of kb obtained from Equation (3.51) and (3.52). 

 

3.6 Criteria for Model Selection 

The Model selection criteria considered in this research are (1) Akaike Information 

Criterions (AIC) and (2) Bayesian Information Criterions (BIC)     

 

3.6.1 Akaike Information Criterions (AIC) 

The general form for calculating AIC 

  AIC=-2×In(Likelihood) + 2×p            (3.56) 

where  

 In  is the natural logarithm 

(Likelihood) is the value of the likelihood 

P is the number of parameter in the model. 

AIC can be calculated using residual sum of squares from regression (Henry, 2010): 

  AIC= n×In(RSS/n) +2×p             (3.57) 

where  

n is the number of data points (observations) 

RSS is the residual sum of squares  

AIC requires a bias- adjustment small sample sizes. If ratio of 
 

 
  40, then use bias –

adjustment: 

AICC = n×In (likelihood) +2p +
         

       
           (3.58) 

Note that the parameters are defined as above in Equation (3.56). Also, that as the size of the 

dataset, n, increases relative to the number of parameters, p; the bias-adjustment term on the 

right becomes very small. Therefore, it is recommended that we always use the small sample 

adjustment. 

 

3.6.2 Bayesian Information Criterions (BIC) 

The general form for calculating BIC 

  BICC = n×In(likelihood)) + n×In(n) + [Inn] ×p          (3.59) 

Note: all parameters are defined as Equation (3.56); and the small values of BIC and AIC 

model will be chosen as the best model for the selected models (or selected as the suitable 

model among the selected models) [Schwarz, 1978]. 

 

4.  Numerical Analysis and Results 

This study focuses on the household utilized and non-utilized primary health care 

services in Choba, Obio/Akpor LGA of Rivers State. The data used for analysis were 

obtained through a constructed questionnaire (Appendix A). The extracted data from the 

0

0

: 0

: 0

k

k

against





 
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administered questionnaire comprises responses from four hundred households visited. The 

target population of this study was four hundred (400) household. However, four hundred and 

twenty (420) questionnaires were administered to households and based on the questionnaires 

that were returned, 400 were considered for this study. The statistical Software used are 

Microsoft Excel, SPSS 21 and Minitab 16. 

In this study, the response (Y) denotes the probability distribution    ii  1  or 

  ii  10  [Response Variable (Y), representing if household utilized and non-

utilizes primary health care services two or more times in the last one month] and the 

predictors (X) are described as follows: 

AMO (X1): Availability of Medical Officer 

EDUC(X2): Educational Years 

PRIMED(X3): Average price of medication (naira)   

DISTANCE(X4): Average driving distance (mins) 

RY(X5): Average Monthly Income of respondents (naira) 

From any set of p predictors, we have 2
p
 alterative models can be constructed. It is 

based on the fact that each predictor can either be excluded or included from the model 

(Christensen, 1997). Therefore, we have p=5, then 2
5
 =32 different possible subset models 

that can be formed from the pool of five variables (X), such that 0i iY e  . That is there 

are  regression models with five variables (X1, X2, X3, X4 , X5), with two variables [X1 and 

X2, X1 and X3, X1 and X4, X1 and X5, X2 and X3, X2 and X4, X2 and X5, X3 and X4, X3 and 

X5, then X4 and X5], and so on. To choose the best model from the selected models, we used 

the two common Criteria for Model Selection developed to compare the selected suitable 

models.  

 

4.1 Hypothesis  

  H0: The model adequately describes the data 

                     against          

H1: The model does not adequately describe the data 

 

4.2  The Procedure for Data Analysis 

We used the goodness-of-fit tests, wald test ( *Z -test) and if p-value is less than 

accepted  -level, the test would reject the null hypothesis of an adequate fit. Our interest is 

to investigate the use of (if household utilized and non-utilized) primary health care services 

two or more times in the last one month as follows: 

1. The availability of medical officer and educational Years (or level) upon the 

response variable (Model A). 

2. Availability of medical officer and the Average price of medication upon the 

response (Model B).  

3. Availability of medical officer and average driving distance upon the response 

(Model C). 

4. Availability of medical officer and average real income (or monthly income of 

respondents) upon the response (Model D). 

5. Availability of medical officer, education years and average driving distance upon 

the response (Model E). 

6. Availability of medical officer, Education years, average monthly income of 

respondents, average driving distance and average real income (or monthly 

income of respondents) upon the response (Model F).  

we compared this models to identify which model is suitable between logistic and 
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Poisson regression models, using the household utilized/ non utilizes primary health care 

services in Choba, Obio/Akpor LGA of Rivers State data obtained. Furthermore, we test 

whether ,0k  or relate to the response variable, using the following techniques; 

Likelihood ratio test Statistic G
2
, Odd ratio, Wald test (z-test) and two model selection 

criteria: Akaike Information criterion (AIC) and Bayesian Information criterion and (BIC) 

discussed in Chapter three, Section 3.4 to 3.6. 

 

4.3 Results 

This section is divided into four parts; 1) Descriptive statistics of the respondents 

profile in the questionnaire; 2) Logistic Regression Model; 3) Poisson Regression Model; and 

4) Comparison of the estimated models parameters and identification of the optimal model 

using the two criterions considered for models selection (i.e. Logistic and Poisson regression 

Models). 

 

4.4 Descriptive statistics 

Table 4.1: Summary of Number of Household size and Sex of the Respondents who 

utilized/non utilized the primary health care services 

Household size Frequency Percent 

2 79 19.75 

3 78 19.50 

4 93 23.25 

5 79 19.75 

6 71 17.75 

Sex Frequency Percent 

F 383 95.75 

M 17 4.25 

 

Table 4.1 illustrates that household with 6 members has the minimum percentage with 

the value of 18%; while the household with 4 members has the maximum value of (23%), 

indicating that 23% of the respondents’ families have 2 children alongside the husband and 

wife. It is further seen from the Table 4.1 that, 96% (383) of the respondents were females 

and 4% (17) were males. Suggesting that majority of respondents who visit hospitals are 

females. 

 

4.5 Logistic Regression 

In Section 4.2; we considered six models to be built. The log-likelihood function 

(maximum likelihood estimators) of the Logistic regression is used to estimate the parameters 

denoted as 
0 1, ,..., p   as described in Section 3.2 Equation (3.49). 

 

4.5.1 Fitted Logistic Regression for Model A: Y versus A.M.O. and Education 

When p=2, X1=A.M.O, X2 =Education   

 

Table 4.2: Estimated Coefficients, p-values and odds ratios for Model A 

Predictor Coefficients P-values Odds Ratio 

Constant 1.32609 0.000 
 

A.M.O. 0.96622 0.000 2.63 

Education Years -0.08238 0.005 0.92 
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4.5.2 Fitted Logistic Regression for Model B: Y versus A.M.O, Primed 

Similarly, the log-likelihood function (maximum likelihood estimators) of the 

Logistic regression model is obtained as above. 

 When p=2, X1=A.M.O, X3=Primed.  

 

Table 4.3: Estimated Coefficients, p-values and odds ratios Model B 

Predictor Coefficients P-values Odds Ratio 

Constant 0.692676 0.001 
 

A.M.O. 0.901548 0.000 2.46 

Primed -0.0001587 0.219 1.00 

 

4.5.3 Fitted Logistic Regression Model C: Y versus A.M.O., Distance (mins)  

When p=2, X1 = A.M.O, X4 = Distance (mins)  

 

Table 4.4: Estimated Coefficients, p-values and odds ratios Model C 

Predictor Coefficients P-values Odds Ratio 

Constant 0.813482 0.002 
 

A.M.O. 0.901657 0.000 2.46 

Distance (mins) -0.0076804 0.194 0.99 

 

4.5.4 Fitted Logistic Regression Model D: Y versus A.M.O., RY (N0.000) 

When p=2, X1=A.M.O, X5 = RY (N0.000)  

 

Table 4.5: Estimated Coefficients, p-values and odds ratios Model D 

Predictor Coefficients P-values Odds Ratio 

Constant 0.622565 0.013 
 

A.M.O. 0.898790 0.000 2.46 

RY (N0.000) -0.0000040 0.665 1.00 

 

4.5.5 Fitted Logistic Regression Model E: Y versus A.M.O., Education, Distance (mins) 

When p=3 X1=A.M.O, X2=Education, x4=Distance (mins)  

 

Table 4.6: Estimated Coefficients, p-values and odds ratios Model E 

Predictor Coefficients P-values Odds Ratio 

Constant 1.54634 0.000 
 

A.M.O. 0.969482 0.000 2.64 

Education -0.0803738 0.007 0.92 

Distance (mins) -0.0067063 0.263 0.99 

 

4.5.6 Fitted Logistic Regression Model F; Y versus A.M.O., Education, Primed, 

Distance (mins), RY 

When p=5, X1=A.M.O, X2=Education, X3=Primed, x4=Distance, X5=RY  
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Table 4.7: Estimated Coefficients, p-values and odds ratios Model F 

Predictor Coefficients P-values Odds Ratio 

Constant 1.72150 0.000 
 

A.M.O. 0.972932 0.000 2.65 

Education -0.0811425 0.006 0.92 

Primed -0.0001570 0.246 1.00 

Distance (mins) -0.0064727 0.280 0.99 

RY (N0.000) -0.0000011 0.911 1.00 

 

The fitted Logistic response function and the fitted values (estimates for the Model A) 

in Table 4.2 can be expressed as; 

1 2

1 2

exp(1.326 0.966 0.0823 )
ˆ

1 exp(1.326 0.966 0.0823 )

i i
i

i i

x x

x x


 


  
                                                         (4.1) 

From Table 4.2, it is seen that both availability of Medical Officers (A.M.O) and the 

level of Education played major roles on the respondents’ utilization of the primary 

healthcare services, since both estimated parameters has significant effect. While the odds 

ratio suggests that in a facility where there are medical officers, there is the likelihood of 

having at least 3 patients at any time with one being educated. 

 

Similarly, the fitted Logistic response function and the fitted values (estimates for the 

Model B to F) in Table 4.3 to 4.7 are expressed as; 

1 3

1 3

exp(0.693   0.902  0.00016 )
ˆ

1 exp(0.693   0.902  0.00016 )

i i
i

i i

x x

x x


 


  
                                                   (4.2) 

1 2

1 2

exp(0.813 0.902 00768 )
ˆ

1 exp(0.813 0.902 00768 )
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i i

x x

x x


 

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                                                             (4.3) 
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1 5

exp(0.623 0.899 0.00004 )
ˆ

1 exp(0.623 0.899 0.00004 )

ii

i

i i

x x

x x


 


  
                                                           (4.4) 

1 2 4

1 2 4

exp(1.546 0.969 0.0804 0.00671 )
ˆ

1 exp(1.546 0.969 0.0804 0.00671 )

i i i
i

i i i

x x x

x x x


  


   
                                          (4.5) 

1 2 3 4 5

1 2 3 4

exp(1.722 0.973 0.0811 0.000157 0.00647 0.000001 )
ˆ

1 exp(1.722 0.973 0.0811 0.000157 0.00647 0.000001 5)

i i i i i
i

i i i i

x x x x x

x x x x xi


    


     
     (4.6) 

In Table 4.3, it is observed that availability of Medical Officers (A.M.O) played major 

role on the respondents’ utilization of the primary healthcare services, with p-value < 0.05 

and has a significant effect. However, the average price of medication including transport 

cost (Primed), does not have effect on the healthcare service utilization and p-value >0.05 

(0.22).  

 

In Table 4.4, availability of Medical Officers (A.M.O) determines the respondents’ 

utilization of the primary healthcare services, with p-value (0.000) < 0.05 and  hence, has a 

significant effect, while  the Average Distance (mins), does not  have an effect on the services 

with  p-value of  (0.194) > 0.05 

In Table 4.5, availability of Medical Officers (A.M.O) determines the respondents’ 

utilization of the primary healthcare services, with p-value (0.000) < 0.05 while the Average 

income RY (N0.000), does not  have effect on the healthcare services with  p-value of  

(0.665) > 0.05.  
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Table 4.6 shows availability of Medical Officers (A.M.O) and Level of Education 

determines the utilization of the primary healthcare services, with p-value < 0.05 (0.000 and 

0.007 respectively)  while the distance does not have effect with  p-value of (0.263) > 0.05. It 

implies that availability of Medical Officers and level of education are the major determining 

factors on the use of primary healthcare services. While the odds ratio suggests that in a 

facility where there are Medical Officers, there is the likelihood of having at least 3 patients 

at any time with one being educated and one because of the distance (min) who might not 

visit the facility. 

Table 4.7 shows that availability of Medical Officers (A.M.O) and Level of education 

determines the utilization of services with p-values < 0.05 (0.000 and 0.006 respectively), 

while distance, primed and RY have no effect with p-values > 0.05. It suggests that 

availability of Medical Officers and level of education are the major determining factors on 

the use of primary healthcare services.  

 

- The selected six models summary for Logistic regression using the two criterion 

Table 4.8:  The rank of AIC and BIC values of the Six Logistics models selected  

Model Predictors Rank AIC BIC 

A X1 , X2 (A.M.O, Education) 1 447.313 459.287 

B X1 , X3 (A.M.O, Primed) 6 453.681 465.655 

C X1 , X4 (A.M.O, Distance) 4 453.510 465.485 

D X1 , X5, (A.M.O, RY) 5 454.993 466.967 

E X1 , X2, X4 (A.M.O, Education, Distance) 2 448.071 464.037 

F X1 , X2, X3 X4, X5 (A.M.O, Education, Primed, 

Distance, RY) 

3 450.566 474.515 

In Table 4.8, the AIC and BIC with the least values is Model A, therefore Model A is 

the best model using the two models selection criterion considered and can be expressed as 

Equation 4.1; where , ˆ
i = Y is response variable (if household utilized primary health care 

services or not) and (X1=A.M.O, X2= Education). 

 

4.6  Poisson Regression 

Considering the Poisson regression, the log-likelihood function for Poisson regression 

to estimate the maximum likelihood estimators denoted as 
0 1, ,..., p    and it is obtained as 

described in Equations 3.50. 

  

4.6.1 Fitted Poisson Regression Model A; Y versus A.M.O., Education  

When p=2 (X1=A.M.O, X2=Education),  

 

Table 4.9: Estimated Coefficients, Wald Chi-Square and Significance Values Model A 

Predictors Coefficients Wald Chi-Square  Sig. 

(Intercept) -.260 2.406  .121 

Education -.022 2.024  .155 

AMO .259 4.547  .033 
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4.6.2 Fitted Poisson Regression Model B, Y versus A.M.O., Primed 

When p=2 (X
1
=A.M.O, X3=Primed) 

 

Table 4.10: Estimated Coefficients, Wald Chi-Square and Significance Values Model B 

Predictors Coefficients Wald Chi-Square Sig. 

(Intercept) -.420 13.464 .000 

AMO .246 4.136 .042 

Primed -4.190E-005 .387 .534 

 

4.6.3 Fitted Poisson Regression Model C; Y versus A.M.O., Distance (mins), 

When p=2, X1=A.M.O, X4=Distance (mins)  

 

Table 4.11: Estimated Coefficients, Wald Chi-Square and Significance Values Model C 

 

Predictors 

 

Coefficients 

Wald Chi-Square Sig. 

(Intercept) -.388 7.241 .007 

AMO .246 4.131 .042 

Distance(min) -.002 .430 .512 

 

4.6.4 Fitted Poisson Regression Model D; Y versus A.M.O., RY (0.00), 

When p=2 X1=A.M.O, X5=RY (0.00),   

 

Table 4.12: Estimated Coefficients, Wald Chi-Square and Significance Values Model D 

 

Predictors 

 

Coefficients 

Wald Chi-Square Sig. 

(Intercept) -.439 10.315 .001 

AMO .246 4.139 .042 

RY -1.010E-006 .046 .831 

 

4.6.5 Fitted Poisson Regression Model E; Y versus A.M.O, Education, Distance when 

p=3, X1=A.M.O, X2=Education, X4=Distance (mins) 

 

Table 4.13: Estimated Coefficients, Wald Chi-Square and Significance Values Model E 

 

Predictors 

 

Coefficients 

Wald Chi-Square Sig. 

(Intercept) -.206 1.128 .288 

AMO .258 4.528 .033 

Education -.021 1.896 .169 

Distance (mins) -.002 .302 .582 
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4.6.6 Fitted Poisson Regression Model F; Y versus A.M.O., Education, Primed, 

Distance, RY 

 When p=5, X1=A.M.O, X2=Education, X3= Primed, X4=Distance (mins), X5=RY 

 

Table 4.14: Estimated Coefficients, Wald Chi-Square and Significance Values Model F 

 

Predictors 

 

Coefficients 

Wald Chi-

Square 

Sig. 

(Intercept) -.164 .564 .453 

AMO .259 4.546 .033 

Education -.021 1.925 .165 

Primed -4.151E-005 .357 .550 

Distance(Min) -.002 .276 .599 

RY -2.051E-007 .002 .966 

 

The fitted Poisson response function and the fitted values (estimates for the Model A 

to F) in Table 4.9 to 4.14 are expressed as; 

1 2
ˆ exp(-0.260 0.022 0.259 )i i ix x                                                           (4.7) 

5

1 3
ˆ exp(-0.420+0.246 4.19 10 )i i ix x                                                     (4.8) 

1 4
ˆ exp(-0.388+0.246 0.002 )i i ix x                                                            (4.9) 

6

1 5
ˆ exp(-0.439+0.246 1.01 10 )i i ix x                                                      (4.10) 

1 2 4
ˆ exp(-0.206+0.258 0.021 0.002 )i i i ix x x                                            (4.11) 

5 7

1 2 3 4 5
ˆ exp(-0.164+0.259 -0.021 4.15 10 -0.002 2.05 10 )i i i i i ix x x x x               (4.13) 

From Table 4.9, the Poisson regression done shows only availability of Medical 

Officers (A.M.O) has mean effect on the utilization of primary healthcare facility with 

significance value of 0.033 < 0.05; while education level was seen not to have any effect, 

hence, insignificant.  

 

In Table 4.10, it was discovered that only availability of Medical Officers (A.M.O) 

has mean effect on the utilization of primary healthcare facility with significance p-value of 

0.042< 0.05; while the Average price of medication including transport cost (Primed), was 

seen not to have any effect, hence, insignificant.  

In Table 4.11, it was also discovered that only availability of Medical Officers 

(A.M.O) that has mean effect on the utilization of primary healthcare facility with significant 

value of 0.042< 0.05; while, Distance was seen to have no effect, hence, it is said not be 

significant.  

 

Table 4.12 also shows that only availability of Medical Officers (A.M.O) has mean 

effect on the utilization of primary healthcare facility with significance p-value of 0.042< 

0.05; while, RY (the Average income (N0.000)), had no effect, hence, insignificant.  

In Table 4.13, it was also discovered that only availability of Medical Officers 

(A.M.O) that has mean effect on the utilization of primary healthcare facility with its 

significance p-value of 0.033< 0.05; while, Distance and Education were seen to have no 

effect, hence, insignificant.  

Finally in Table 4.14, availability of Medical Officers (A.M.O) only determines the 

respondents’ utilization of the primary healthcare facilities, with p-value < 0.05 (p=0.033). 

Hence, AMO have a significant effects, while the others has no effect on the healthcare 

facilities utilization, since their p-values are greater than 0.05.  
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- The selected six models summary for Poisson regression using the two criterion 

Table 4.15:  The rank of AIC and BIC values of the Six Poisson models selected  

Model Predictors Rank AIC BIC 

A X1 , X2 (A.M.O, Education) 1 768.157 780.131 

B X1 , X3 (A.M.O, Primed) 3 769.814 781.788 

C X1 , X4 (A.M.O, Distance) 2 769.769 781.743 

D X1 , X5, (A.M.O, RY) 5 770.159 782.219 

E X1 , X2, X4 (A.M.O, Education, Distance) 4 769.851 785.817 

F X1 , X2, X3 X4, X5 (A.M.O, Education, Primed, 

Distance, RY) 

6 773.452 797.401 

From Table 4.15, the best model is Model A, using the AICP and BICP criterion and 

can expressed as Equation 4.7; where, ˆ
i = Y is response variable (if household utilized 

primary health care services or not) and (X1=A.M.O, X2=Education). 
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Table 4.16:  Summary of the Coefficients and p-values of Six Logistics and Poisson Regression Models 

 

 

 

 

S/No. 

 

 

 

Model 

 

 

 

Model Variables  

Estimated Coefficients (P-values at 5%)  

 

Level of 

Significant  

Logistic Regression Model (LM) Poisson Regression Model (PM) 

 

1 

A Constant 

X1=A.M.O, 

X2=Edu.  

(Y , X1, X2 ) 

)000.0(326.10   

)000.0(966.01   

)005.0(082.02   

)121.0(26.00  ** 

)033.0(259.01   

)155.0(022.02  ** 

0  1 2 are 

sig. for (LM) 

while only 1

is sig. for 

(PM) 

2 B Constant 

X1=A.M.O, 

X3=Primed 

(Y, X1, X3 ) 

)001.0(693.00   

)000.0(902.01   

)219.0(00016.03  ** 

)00.0(420.00 

)042.0(246.01  ** 

)534.0(1019.4 5

3

 ** 

0  1 are sig. 

for both  

3 C
 

Constant 

X1=A.M.O, 

X4=Distance 

(Y, X1,X3) 

)002.0(813.00   

)000.0(702.01   

)194.0(0076.04  ** 

)007.0(388.00   

)042.0(246.01  ** 

)512.0(002.04  ** 

0  1 are sig. 

for both 

4 D Constant 

X1=A.M.O,  

X5=RY 

(Y, X1,X4) 

)013.0(623.00   

)000.0(899.01   

)665.0(1001.4 6

4

 ** 

)001.0(439.00   

)042.0(246.01   

)831.0(1001.1 6

4

 ** 

0  1 are sig. 

for both 

5 E Constant 

X1=A.M.O,  

X2=Edu. 

X4=Distance 

(Y, X1, X2, X3) 

)000.0(546.10   

)000.0(969.01   

)007.0(080.02   

)263.0(0067.04  ** 

)288.0(206.00  ** 

)033.0(258.01   

)169.0(021.02  ** 

)582.0(002.04  ** 

0  1 2 are 

sig. for (LM) 

while only 1

is sig. for 

(PM) 
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6 F Constant 

X1=A.M.O,  

X2=Edu. 

X3=Primed 

X4=Distance 

X5=RY 

(Y, X1, X2, X3, X4, 

X5) 

)000.0(722.10   

)000.0(973.01   

)006.0(0297.02   

)246.0(1057.1 4

3

 **

)280.0(0065.04  ** 

)911.0(101.1 6

5

 ** 

 

)453.0(164.00  ** 

)033.0(259.01   

)165.0(021.02  ** 

)550.0(1015.4 5

3

 ** 

)665.0(1001.4 6

4

 ** 

)966.0(1005.2 7

5

 ** 

0  1 2 are 

sig. for (LM) 

while only 1

is sig. for 

(PM) 

 

Footnote: ** p-values greater than the appropriate critical value (0.05) is not significant and the bold Model is the optimal model identified. 

 

Table 4.17:  Comparison of the rank of AIC and BIC of the Six Logistics and Poisson regression models 

 

Rank 

 

Model: Predictors 

Logistic regression  Poisson regression 

AIC BIC Predictors AIC BIC 

1 Model A: Y, X1 , X2 (A.M.O, Education) 447.313 459.287 Model A: X1 , X2 (A.M.O, 

Education) 
768.157 780.131 

2 Model E: Y, X1 , X2, X4 (A.M.O, 

Education, Distance) 

448.071 464.037 Model C: X1 , X4 (A.M.O, 

Distance) 

769.769 781.743 

3 Model F: Y, X1 , X2, X3 X4, X5 (A.M.O, 

Education, Primed, Distance,  RY) 

450.566 474.515 Model B: X1 , X3 (A.M.O, 

Primed) 

769.814 781.788 

4 Model C: Y, X1 , X4 (A.M.O, Distance) 453.510 465.485 Model E: X1 , X2, X4 (A.M.O, 

Education, Distance) 

769.851 785.817 

5 Model D: Y, X1 , X5, (A.M.O, RY) 454.993 466.967 Model D: X1 , X5, (A.M.O, RY) 770.159 782.219 

6 Model B: Y, X1 , X3 (A.M.O, Primed) 456.680 465655 Model F: X1 , X2, X3 X4, X5 

(A.M.O, Education, Primed, 

Distance, RY) 

773.452 797.401 

Footnote: the bold Model is the optimal model identified. 
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The Logistic regression     and     values are 447.331 and 459.287 respectively 

for the Model A (i.e. A.M.O and Education) and it is the lowest of all the models selected 

suggesting that Model A is the best model. Also, the Poisson regression     and     

values are 768.157 and 780.131 respectively for the Model A (i.e. A.M.O and Education) and 

it’s the lowest of the entire model suggesting that Model A is the best model.  

 

4.8 Result Discussion  

From Table 4.16 and Table 4.17, both regression techniques identified Model A (i.e. 

A.M.O and Education) as the best model for predictive of the response variable (if household 

utilized primary health care services or not).  

 In Table 4.17, both the    and     values of Model A had the lowest of the 

entire model suggested in the Logistic and Poisson regression models done.  

Table 4.16 shows the coefficients and p-values of Six Logistic and Poisson regression 

models selected. The best Logistic and Poisson regression model identified is Model A, 

where the explanatory variables are A.M.O and Education. 

 The p-values of A.M.O and Education are 0.000 and 0.005 respectively for the 

Logistic regression Model A; shows the coefficients are significant at 5%. However, the 

Poisson regression Model A; shows that the A.M.O variable is the only independent variable 

that is significant with p-value of 0.033. Therefore, the best Logistic regression model 

identified is when the explanatory variables are A.M.O and Education. However, the Poisson 

regression model also identified the same model as the best model, but the A.M.O is the only 

significant independent variable. In addition, since the    and     values of Logistic 

regression is smaller than that of Poisson regression, it suggests that Logistic regression 

model is the best fit in modeling count data. 

 

5. Conclusion    

The descriptive statistics shows that a household with 6 members has the minimum 

percentage with the value of 18% while a household with 4 members has the maximum value 

of 23%. The best logistic regression model identified is when the explanatory variables are 

A.M.O and Education (since, there are coefficients that are significant at 5% with p-value 

0.000 and 0.005 respectively. However, the Poisson regression model also identified the same 

model as the best model, but the A.M.O is the only significant independent variable with p-

value 0.033. 

 

The    and    for both Logistic and Poisson regression identified the model to 

be the best, when predictors are A.M.O and Education. Conclusively, the      and       of 

Logistic is smaller than Poisson regression model, suggesting that Logistic regression model 

is the best fit in modeling binary response variable count data [or the result showed that the 

Logistic regression model is the best fit in modeling binary response variable in form of a 

count data; based on the two assessment criteria employed Akaike Information Criterion 

(AIC) and Bayesian Information Criterion (BIC)]. Therefore, the findings are 

1) Was able to identify a suitable Logistic and Poisson regression model from the count 

data observation where the response is binary. 

2) The performance of the Logistic and Poisson regression model estimated coefficients 

have been compared, using     and     for Criterions. 

3) The research identified Logistic regression model to be more suitable for the 

observation considered. 

 

5.1    Recommendation 

This research recommended Logistic regression model in analyzing count data, with 



International Journal of Applied Science and Mathematical Theory ISSN 2489-009X Vol. 4 No. 1 2018    

www.iiardpub.org 

  

 
 
 

IIARD – International Institute of Academic Research and Development 
 

Page 65 

binary response based on the findings of the research. This paper identified Logistic 

regression model to be more suitable where the response is binary. 
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APPENDIX A 

QUESTIONNAIRE 

Title: ASSESSING LOGISTIC AND POISSON REGRESSION MODEL IN 

ANALYZING COUNT DATA 

[In Determinants of primary healthcare Service Variables in Choba, Rivers State 

(Obio/Akpor Local Government Area)] 

Instruction:  Please tick    and fill in the appropriate answer where necessary 

 

Part A 

1. Sex:   Male    Female 

2. Household size (Number of individual) ………………………………………… 

 

Part B 

3 If your household utilizes primary healthcare service two or more times in last one 

month.  Yes  No 

4. What is your average monthly income ………………………………………….. 

(Naira) 

5. What is the total price of medication including transportation cost in Naira paid by 

household per visit to a primary healthcare centre.………………………………….. 

(Naira). 

6. What is the distance to the nearest primary healthcare centre………………… (in 

Minutes.) 

7. What is your educational qualification 

Primary Education  Secondary Education  Tertiary Education 

8. Availability of medical officer in the nearest primary healthcare centre. 

Yes  No 

 

Definition of Variables 

     y = 1, if household utilized primary health care services two or more times in the 

last one month. 

 y = 0, if household does not utilize primary health care 

services. 

   Sex: Female=F, Male=M 

      Houssehold Size: Number of 

Individuals 

     Ry = Average monthly income of respondents 

(naira) 

    PRIMED = Average price of medication including transport cost in naira paid by household per 

visit to a primary health care centre. 

      Distance (Mins) = Average driving distance to a nearest primary health centre in 

minutes. 

 EDUC = Level of education 

attained. 

                    6 = Completed primary 

education 

                    12 = Completed secondary education 

                   16 = Completed tertiary 

education 
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HSIZE = Average Household Size 

     AMO = Indicator variable for availability of medical officer in the nearest primary health care 

centre. 

   AMO = O if no medical doctor is available in the primary health centre nearest 

to the household. 

    AMO = 1 if one or more medical doctors is available in the primary health centre nearest to the 

household. 

Source: Researcher's Field work, 

2016.  

      

 

 

 

 

 

 


